Medium voltage, arc-proof, air-insulated, metal-clad switchgear and controlgear up to 12kV

HS21

For marine and offshore use
Description

Characteristics
- Medium voltage switchgear for marine and offshore use
- Full type approval
- Type tested in accordance with IEC 62271-200
- Metal-clad construction
- Independently arc-fault tested
- Circuit breaker with safety metal shutter
- Option of air insulated bus bars
- Safety mechanical interlocks
- Front service operation
- Circuit breaker insertion and withdrawal with the front panel door closed
- Making current earthing switch
- Intelligent circuit monitoring devices
All TERASAKI medium voltage switchboards are specifically designed and manufactured to meet the environmental and safety conditions of the marine and offshore industries.

TERASAKI's reputation throughout the marine and offshore industry ensures that reliability and safety are of prime importance in the design and manufacture of the HS21 medium voltage switchboard.

Design standards incorporated
The switchboard and the instrument have applied the following standards.
- IEC 62271-200 : switchboard
- IEC 62271-100 : circuit breaker
- IEC 62271-106 : contactor
- IEC 60044-1 : current transformer
- IEC 60044-2 : voltage transformer
- IEC 60255 : electrical measuring and protection relay
- IEC 60076-1 : power transformer
- JEC 1201 : zero phase transformer

Adapted various marine classification
- American Bureau of Shipping (ABS)
- Det Norske Veritas (DNV)
- Bureau Veritas (BV)
- Germanischer Lloyds (GL)
- Lloyds Register of Shipping (LR)
- Nippon Kaiji Kyokai (NK)

Environmental specification vessel types
- Ambient temperature : 45°C
- Relative humidity : 95%
- Vibration (, in accordance with IEC 60092-504)
 all control devices
 2 ~ 13.2Hz, interval of vibration±1.0mm
 13.2 ~ 100Hz, acceleration±0.7g
 max. acceleration 0.7g

Application

Type testing
The HS21 switchboard is independently tested in accordance with IEC 62271-200 and marine classification society requirements.

- Temperature rise test
 This test is carried out at the rated current of the switchboard with the classification societies requirements of a 45-degree C ambient temperature being taken into consideration.

- Dielectric test
 Including impulse voltage and power frequency voltage test.

- Main circuit resistance measurement
 There shall be less than 20% difference in the DC measured resistance values of the main and control circuits.

- Short-time and peak withstand current test
 The panel is deemed to have passed the test if there is no deformation or damage to components and conductors following application of a short circuit current to the switchboard.

- Arcing due to internal fault test
 The switchboard is deemed to have passed the test if following the application of an internal arc fault, in accordance with IEC 62271-200 Annex A the original mechanical integrity and inflammability of the panel is maintained.

Vessel types
The HS21 switchboard is designed for use in:
- Offshore Plant
- Oil Rig supply vessels
- Floating Production Storage Offloading vessels (FPSO)
- Floating Storage Offloading vessels (FSO)
- LNG Carriers
- Large Passenger vessels
- Container ships
- Storage and Work Barges
- Floating Docks, Various Dredgers, etc

Arcing due to internal fault test
General specification

- Basic specifications and panel size of 7.2 kV and 12 kV are the same
 (Refer to the following pages for panel size)
- Miniaturization rather than a conventional switchboard
- Abundant prepared optional equipment

<table>
<thead>
<tr>
<th>Type</th>
<th>HS21-1</th>
<th>HS21-2</th>
<th>HS21-3</th>
<th>HS21-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard conformance</td>
<td></td>
<td>IEC 62271-200 (IEC 60092-508)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classification</td>
<td></td>
<td>ABS, BV, DNV, LR, NK, GL and others</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rating</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated voltage</td>
<td>AC 7.2 kV</td>
<td>AC 12 kV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated frequency</td>
<td>50 / 60 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated power frequency withstand voltage</td>
<td>20 kV/min</td>
<td>28 kV/min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated lightning impulse withstand voltage</td>
<td>60 kV</td>
<td>75kV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated short time withstand current</td>
<td>25 kA 1sec (3sec)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated peak withstand current</td>
<td>65 kA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal arc withstand current</td>
<td>25kA 0.2sec (20kA 1sec)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main bus bar current</td>
<td>1250 A</td>
<td>2000 A</td>
<td>1250 A</td>
<td>2000 A</td>
</tr>
<tr>
<td>Load bus bar current</td>
<td>600 A</td>
<td>600/1000 A</td>
<td>600 A</td>
<td>600/1000 A</td>
</tr>
<tr>
<td>Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switchgear construction</td>
<td>Metal-clad</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degree of protection</td>
<td>Low voltage compartment IP32</td>
<td>High voltage compartment</td>
<td>IP32</td>
<td>IP42</td>
</tr>
<tr>
<td>Optional equipment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Inspection window</td>
<td>- Arc detecting system</td>
<td>- IP33 of low voltage compartment protection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Arc gas exhaust duct</td>
<td>- Insulation tube cover on bus bar</td>
<td>- IP43 of high voltage compartment protection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Earthing switch on main bus bar</td>
<td>- Surge arrester on main bus bar</td>
<td>- Infrared rays window</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes
1) ANSI C37.20.2 on request
2) 3 sec on request
3) Refer to the following pages about the details of optional equipment
4) With arc gas exhaust duct
Dimensions

Basic panel design (example)

![Basic panel design diagram]

Panel Specifications

<table>
<thead>
<tr>
<th>Panel type</th>
<th>W (mm)</th>
<th>H1 (mm)</th>
<th>H2 (mm)</th>
<th>D (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator panel</td>
<td></td>
<td>650</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feeder panel</td>
<td></td>
<td>1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incoming panel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPT panel</td>
<td></td>
<td>2300</td>
<td>2800</td>
<td>1680</td>
</tr>
<tr>
<td>Motor panel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soft start motor panel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bus-tie panel 1 (^1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bus riser & GPT panel</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bus-tie panel 2 (^2)</td>
<td>900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sync panel</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATr panel</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes

1) LNG vessel only
2) Container vessel only

H2 : With open pressure relief flap
Technical data

Typical unit

<table>
<thead>
<tr>
<th>G</th>
<th>Generator panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>Feeder panel</td>
</tr>
<tr>
<td>IC</td>
<td>Incoming panel</td>
</tr>
<tr>
<td>BT</td>
<td>Bus-tie panel</td>
</tr>
<tr>
<td>GPT</td>
<td>Grounded potential transformer panel</td>
</tr>
</tbody>
</table>

M Motor panel

ATr Auto transformer panel

BRG Bus riser & GPT panel

SM Soft start motor panel

An earthing switch can be provided in the GPT panel if required.

Vacuum circuit breaker and Vacuum contactor application

<table>
<thead>
<tr>
<th>Panel types</th>
<th>VCB 630A</th>
<th>VCB 1250A</th>
<th>VCB 2000A</th>
<th>VCT 200/400A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator panel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feeder panel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor panel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incoming panel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soft start motor panel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bus-tie panel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

○ : Applicable
Technical data

Cable entry plan
The HS21 switchboard standard cable entry is from the bottom. Power cables enter through the rear gland plate and control cables through the front gland plate. Top cable entry can be provided, but consultation with TERASAKI is recommended as panel dimensions will increase.

![Diagram of cable entry plan]

Room planning
The room planning of installing HS21 in the switchgear room is shown below.

![Diagram of room planning]
Compartments
Each section of the HS21 metal-clad switchboard is separated into four compartments.
- Circuit breaker
- Main bus bar
- Cable terminations
- Low voltage equipment
To withstand internal arc faults, segregation between compartments is achieved by the use of metal partitions.
See picture below.

Circuit breaker compartment
This compartment is equipped with a vacuum circuit breaker and contactor.
The cradle is equipped with metal shutters.
Draw-out and insertion of the circuit breaker can not be carried out without first satisfying the safety interlock procedure.

Main bus bar compartment
The main bus compartment is designed for 1250A and 2000A round-edged, tinned-copper bus bars.
Insulation between panels is maintained by the use of track-resistant epoxy insulation materials. A fully insulated bus bar system can be provided if required.

Cable compartment
Standard cable entry is from the rear bottom.
However, if required cable, entry can be from above, but the depth of the panel will increase.
Access can not be gained to this compartment without first satisfying the safety interlock procedure of the switchboard.
Also located within this compartment are:
- Earthing switch
- Zero-phase current transformer
- Surge arrester
- Voltage and current transformers

Low voltage compartment
The upper and lower low voltage compartments are located above and below the circuit breaker compartment. Cables routed through the circuit breaker compartment are protected by metal shielding.

Panel partitions
The compartment between each panel is divided by the metallic partition.
Since each compartment have not penetrated between panels, other panels are not affected even when the accident happens by a certain panel.
Moreover, when extending in the future, it can install easily.
Construction
Basic panel design (example)

A Low voltage compartment
1: Upper door
2: Instrument
3: Protection and control unit
4: Switch
9: Lower door

B Circuit breaker compartment
5: Door of circuit breaker compartment
6: VCB draw-in / out handle port
7: Indicator of circuit breaker position
8: VCB draw-in / out interlock key hole
10: Emergency open mechanism
11: Interlock key for de-excitation
12: Earthing switch operating handle port
13: Lower cable compartment door key
14: Vacuum circuit breaker
15: VCB cradle

C Main bus bar compartment
16: Pressure relief flap
17: Insulation bushing
18: Main bus bar

D Cable compartment
19: Surge arrester
20: Current transformer
21: Load bus bar
22: Power cable terminal
23: Earthing switch
24: Zero-phase current transformer
25: Voltage transformer
26: Upper door
27: Upper cable compartment door key hole
28: Lower door
29: Lower cable compartment door key hole
Product description

Pressure relief flaps
To relieve pressure during an internal arc fault, pressure relief flaps are provided on the circuit breaker, bus bar and cable compartments at the positions shown.

Insulation bushing
To maintain electrical characteristics and mechanical strength the three-phase single molding insulation bushings are manufactured using high-grade epoxy resin material.

Specification

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage</td>
<td>12 kV</td>
</tr>
<tr>
<td>Rated power frequency withstand voltage</td>
<td>28 kV / min</td>
</tr>
<tr>
<td>Rated lightning impulse withstand voltage</td>
<td>75 kV</td>
</tr>
<tr>
<td>Over current strength</td>
<td>25 kA 1sec (3sec)</td>
</tr>
</tbody>
</table>

1) 3sec on request

VCB (VCT) cradle
The cradle is equipped with mechanical interlocking facilities on the basis of safety consideration. Metal shutters operate automatically on withdrawal or insertion of the VCB / VCT.
Interlocks

- Mechanical interlocking facilities satisfy demand of IEC62271-200.
- Descriptions of the HS21 switchboard interlocks are shown below.

I. With metal-clad compartmented switchgear and controlgear, door should only be opened when the part of the main circuit contained in the compartment being made accessible is dead.

II. They shall be provided with locking facilities, unless the safety of persons is assured by a suitable interlocking device.

III. The withdrawal or engagement of a circuit breaker, switch or contactor shall be impossible unless it is in the open position.

IV. It shall be impossible to close the circuit breaker, switch or contactor in the service position unless it is connected to auxiliary circuit.

V. When circuit breaker is a connect position, it isn’t possible to do the “ON” position of earthing switch.

Interlock release procedure for maintenance (example)

1. **Step 1**: Circuit breaker open
2. **Step 2**: Turn CB draw-in / out interlock key
3. **Step 3**: Circuit breaker draw-out
4. **Step 4**: Earthing switch ON
5. **Step 5**: Open CB comp’t door (in case of CB maintenance)
6. **Step 6**: Turn and remove lower cable comp’t door key
7. **Step 7**: Turn lower cable comp’t door key
8. **Step 8**: Remove upper door
9. **Step 9**: Turn upper cable comp’t door key

With metal-clad compartmented switchgear and controlgear, door should only be opened when the part of the main circuit contained in the compartment being made accessible is dead.

They shall be provided with locking facilities, unless the safety of persons is assured by a suitable interlocking device.

The withdrawal or engagement of a circuit breaker, switch or contactor shall be impossible unless it is in the open position.

It shall be impossible to close the circuit breaker, switch or contactor in the service position unless it is connected to auxiliary circuit.

When circuit breaker is a connect position, it isn’t possible to do the “ON” position of earthing switch.
Vacuum circuit breaker HVF

Applicable standards
The HVF vacuum circuit breakers meet all the requirements of IEC 62271-100 and the other applicable standards.

Service life time
HVF vacuum circuit breaker operating mechanism features reduced maintenance requirements, providing a long-life expectancy of 30,000 operations.
Because of the small amount of contact erosion, contact life is increased to 20,000 operations for the rated normal current.

Maintenance free
The circuit breaker require little maintenance.
In fact, only the parts subject to normal wear and aging must be serviced to ensure fully reliable operation.
This involves simple jobs carried out by the customer’s personal with short servicing times and corresponding downtimes and also long operation periods between servicing.
Maintenance is confined to lubricating the operating mechanism.
The vacuum interrupters and their supports need not be serviced.

Rapid load transfer, synchronizing and operating duty
With its consistent short closing and opening times, the HVF is especially beneficial in load transfer from one circuit to another without interruption of service.
This high speed operation synchronizes the systems so that they are parallel at the moment of contact closure.
According to the relevant standards, tests were carried out for the following operation duty.
O - 0.3s - CO - 3min - CO (for auto-reclosing)

Switching upload transformers
By using special contact materials, the chopping current of the vacuum circuit breakers is only 4 to 5A.
This means that no dangerous over voltages arise when unloaded transformers are disconnected.

Specification

<table>
<thead>
<tr>
<th>Type</th>
<th>HVF-104/L</th>
<th>HVF-204/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage</td>
<td>7.2 / 12 kV</td>
<td></td>
</tr>
<tr>
<td>Rated current</td>
<td>630 A</td>
<td>1250 A</td>
</tr>
<tr>
<td>Rated frequency</td>
<td>50 / 60 Hz</td>
<td></td>
</tr>
<tr>
<td>Rated short circuit breaking current</td>
<td>25 kA</td>
<td></td>
</tr>
<tr>
<td>Rated short circuit making current</td>
<td>65 kA</td>
<td></td>
</tr>
<tr>
<td>Rated short time withstand current</td>
<td>25 kA 3sec</td>
<td></td>
</tr>
<tr>
<td>Rated control circuit voltage</td>
<td>DC 110V</td>
<td></td>
</tr>
</tbody>
</table>

1) Type number in the square: []...630A, []...1250A, []...2000A
Components

Vacuum contactor HCA

- **Applicable standard**
 The HCA vacuum contactor is manufactured in accordance with international standard IEC 62271-106.

- **Service life time**
 HCA vacuum contactor operating mechanism features reduced maintenance requirements, providing a long-life expectancy of 1,000,000 operations.

- **Contact inspection**
 Inspection of contacts for wear can be easily carried out by removal of the front plate and examination of the maximum contact wear point (2mm) marked in white on the contact.
 If the contacts are eroded below this mark, the vacuum interrupter should be immediately replaced.

Specification

<table>
<thead>
<tr>
<th>Type</th>
<th>HCA-6...C...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage</td>
<td>7.2 kV</td>
</tr>
<tr>
<td>Rated frequency</td>
<td>50 / 60 Hz</td>
</tr>
<tr>
<td>Rated current</td>
<td>200 A 400 A</td>
</tr>
<tr>
<td>Rated short circuit breaking current (with power fuse)</td>
<td>40 kA</td>
</tr>
<tr>
<td>Rated short time current</td>
<td>3.2 kA 1sec</td>
</tr>
<tr>
<td>Rated control circuit voltage</td>
<td>AC / DC 110V</td>
</tr>
<tr>
<td>Max motor capacity</td>
<td>1500kW 3000kW</td>
</tr>
</tbody>
</table>

1) Type number in the square

Earthing switch

The earthing switch is located on the VCB/VCT cradle and has a making current capacity rating that ensures maximum possible protection for the operator in case of an error.

Specification

<table>
<thead>
<tr>
<th>Rated voltage</th>
<th>12 kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated short time withstand current withstand voltage</td>
<td>25 kA 3sec</td>
</tr>
<tr>
<td>Rated short circuit making current withstand voltage</td>
<td>63 kA</td>
</tr>
</tbody>
</table>
Multi protection and control unit HIMAP-BCG

- **General characteristic**
 The multi protection and control unit HIMAP-BCG is a bay control unit supplying Power Management System. Nowadays our customers have required much more integrated multi protection relay, monitoring, control devices and power management for better and easier maintenance, performance, electrical system analysis and communication according to new trend of switchboard. HIMAP-BCG supplies those requirements of customers with easy handling and operation.
 HIMAP-BCG provides a graphic display with rear-lit LCD and push buttons as HMI (Human Machine Interface).
 HIMAP-BCG provides the parameter setting program, control setting program, various editors and fault recording and analysis program on Windows / 95 / 98 / NT / 2000 / XP for HMI.
 In addition, HIMAP-BC can be set manually and this manual setting function helps user to interface easily.

- **Protections**
 This protection functions are based on the IEC60255. HIMAP-BCG has non-volatile Flash Memory that can store data safely. The Flash Memory reserves the data regardless of disturbance or electromagnetic wave. In addition to this Flash Memory can store a lot of backup data through a mirror effect.

- ANSI 25 ... Auto synchronizing
- ANSI 27 ... Under voltage
- ANSI 32 ... Reverse power
- ANSI 50 ... Over current
- ANSI 51 ... Time delay over current
- ANSI 59 ... Over voltage relay
- ANSI 64 ... Over voltage ground relay
- ANSI 67 ... Directional over current relay
- ANSI 87 ... Generator differential protective relay
- ANSI 86 ... Lock out relay and more...

- **Power management system**
 The power management function in HIMAP-BCG controls and coordinates the load sharing on a busbar from several parallel generators. HIMAP-BCG can manage a maximum of 4 independent networks separated by tie-breakers. Each network works on its own power management control simultaneously with the other networks. The power management contains the load-dependant start and stop, as well as the symmetrical load sharing of generators. This means all generators will share their load in such a way as to have the same percentage of their own nominal rated power supplied to the same network. Each network can be assigned and prioritized by function input.
 HIMAP-BCG is equipped with a power management system that includes automatic connection to big consumers for controlling the entire mains system. Due to its modular structure, the system is not influenced by any central control unit. Since a HIMAP-BCG is assigned to each generator panel, all generator panels are identically constructed. A two-wire CAN bus communication connects the HIMAP-BCG to each other. In case of the failure of one HIMAP-BCG, the others will continue operating. Each HIMAP-BCG incorporates all important functions necessary for the power management. Thus, the system of independent and autonomous electric engines has been consistently developed for switching gears, control and monitoring (modular independent systems).
 HIMAP-BCG has various pages for power management to access the power management system via HIMAP-BCG. The power management system with HIMAP-BCG doesn't mean the load depending start/stop only. It has the following functions for power management:

- Synchronizing
- Load sharing
- Frequency control
- Load shedding (Preferential trip)
- Load depending start / stop
- Load calculation for big motor start
- Protections
- Power factor (cos ϕ) control
- Asymmetrical power factor (cos ϕ) control
- Voltage regulating
- Engine control with alarm and priority
Components

• Measuring function
 HIMAP-BCG supplies each analogous data pages for measuring as follows.
 - 3-phase current
 - 3-phase voltage
 - Measured and calculated grand voltage
 - Measured and calculated grand current
 - Two different 3-phase bus bar voltages
 - Frequency and power factor
 - Power meter page
 - Active power, reactive power
 - Working current
 - Harmonic wave
 - Operating value
 - Synchronizing

• Control function
 HIMAP-BCG provides breaker functions. These functions can be set manually also allowing customers
to conveniently handle HIMAP-BCG without a PC and downloading program (Flash Loader). Of course,
HIMAP-BCG requires a password or transponder card to access these functions.
HIMAP-BCG is applied to various ship systems. Customers can select the graphic they want to apply.
HIMAP-BCG has various graphic modes for each piece of electrical equipment or feeder. HIMAP-BCG
also has an interlock between switching devices.

• Alarm / Event control functions
 HIMAP-BCG provides detailed information about events, alarms and interlocks. By use of this
information, and a historical data system, trend can be analyzed.

• Data recording functions
 One of the most important function of HIMAP-BCG is extended fault recording function.
 HIMAP-BCG has additional CPU for this extended function as optional.

• Diagnostics and Monitoring
 Diagnostics and supervision are very important functions of the bay controller.

• Panel automation
 HIMAP-BCG provides convenient and perfect interlocking system for control logic of switchboard. In
order to realize this function, HIMAP-BCG sensors position of each switching device and provides the
position indication in feeder graphic. Every switching device can be controlled by HIMAP-BCG locally or
remotely.

• Parameter setting program
 HIMAP-BCG supplies program for easy setting
 of parameters. Several categories simplify page
 setting.

• Communication
 HIMAP-BCG system treats very large data like
 as data recording or parameter data files via
 various communication systems in itself. The
 relevant signal is acknowledged in the related
 function.

• Extension boards CMA
 The extension board is used when additional input / output is required.

<table>
<thead>
<tr>
<th>Specification</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>HIMAP-BCG</td>
</tr>
<tr>
<td>Standard conformance</td>
<td>IEC 60255</td>
</tr>
<tr>
<td>Certifications</td>
<td>ABS, BV, DNV, GL, LRS</td>
</tr>
<tr>
<td>Control power supply</td>
<td>DC 24V / DC 110V / AC 110V AC 220V</td>
</tr>
<tr>
<td>Communication</td>
<td>RS232C, CANbus, MODbus</td>
</tr>
</tbody>
</table>
Generating plant management system GAC21

- **General characteristic**

 The GAC21 Generating Plant Management System is designed to be reliable and user friendly. The system design is based on TERASAKI's experience as a dedicated manufacturer of generator control technology and multiplex transmission systems that have successfully been supplied to a large number of marine projects for many years.

 The GAC21 System is a function-dispersed type system that is designed to operate using its PLC (programmable logic controller).

 It consists of two control units, the GAC21 Automatic Generator Controller and the Type EAS-101 Automatic Digital Synchroniserand can be utilized with up to a maximum of 5 generators.

- **PLC (programmable logic controller)**

 The GAC21 automatically controls generators using its programmable logic controller. It covers the management of the entire generating plant, including the automatic load sharing function, automatic start, automatic switching and power management.

 Control parameters and settings can be easily modified using the device provided with every GAC21 system.

- **Automatic digital synchronizer EAS-101**

 The EAS-101 digital synchronizer has the following features:

 1. A single chip CPU enables this product to be very small and light in weight. Simple program control allows flexibility performing synchronous closing and detection control.

 2. The system has a self-diagnostic capability.

 3. For voltage detection, an effective value detection circuit is used to avoid the situation of disabled synchronous closing due to harmonic waveform distortion.

 4. Automatic and check synchronizing functions are available.
Components

Feeder, incoming, transformer protection relay HIMAP-FI/T

General characteristic

HIMAP is a multifunctional digital protection relay to protect incoming, feeder and transformer lines. Communication facilities are provided to enable measuring functions to be monitored remotely and power management systems to operate automatically.

HIMAP has a self-diagnosis function. Display of any internal malfunction can be shown on the integral display and also transmitted to a remote alarm system.

HIMAP has a digital filter to prevent malfunctions caused by harmonic frequencies in supply lines.

Motor protection relay MPR-6-DGF

General characteristic

The MPR-6-DGF motor protection relay is a new generation of microprocessor based relay designed to protect three phase induction motors.

The MPR-6-DGF incorporates two main functions.

a. Motor protection

b. Supervision and communication

Motor protection

AC motors are very rugged and reliable when operating within their limit. However, they are usually designed to operate close to their rated limits with minimal margins for operating under abnormal conditions.

A comprehensive protection device is required to accurately create a thermal model for the motor to run safely up to its limits.

This relay should protect the motor from abnormal conditions in the power supply, motor and cable faults as well as operator malfunctions.

The MPR-6-DGF monitors three phase currents (true RMS line currents are measured at a sampling rate of 0.5m sec). The MPR-6-DGF monitors ground fault current (true RMS) and zero sequence voltage (3Vo), for Directional Ground Fault protection. The MPR-6-DGF monitors three temperature (RTD or PTC/NTC thermistor) inputs.

All together the MPR-6-DGF provides a comprehensive protection package.

Protections

- ANSI 47 ... Phase sequence
- ANSI 48 ... Maximum start time
- ANSI 51L ... Load increase
- ANSI 49S/51 ... Thermal level (Overload)
- ANSI 50/51R ... stall and short circuit /over current jam
- ANSI 66 ... Start inhibit

- ANSI 67 ... Directional over current
- ANSI 46 ... Unbalanced current
- Temperature (3 sensors) ... RTD Pt.100 or PTN / NTC thermistor
- External fault 1 ... N.O / N.C contacts
- External fault 2 ... N.O / N.C contacts

Actual data

Phase current, ground fault current and thermistor resistance, Motor load in % of FLC, Thermal capacity, Time to trip, Time to start, Unbalance current.

Communication

RS485 serial link with MODbus communication protocol, operating at a baud rate of 1200 to 9600 bits/sec enables monitoring of set-points and actual parameters. The serial link enables remote control of both the MPR-6-DGF and the motors.

Specification

<table>
<thead>
<tr>
<th>Type</th>
<th>HIMAP-FI (feeder, incoming)</th>
<th>HIMAP-T (transformer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control power supply</td>
<td>AC 110V / AC 220V / DC 110V / DC 220V</td>
<td></td>
</tr>
<tr>
<td>Protect function</td>
<td>ANSI 27, 50/51, 59, 64, 67</td>
<td>ANSI 50/51, 67, 87</td>
</tr>
<tr>
<td>Communication</td>
<td>RS232C, RS485 HDLC</td>
<td></td>
</tr>
</tbody>
</table>

Type

- ANSI 27, 50/51, 59, 64, 67
- ANSI 50/51, 67, 87

Control power supply

- AC 110V / AC 220V / DC 110V / DC 220V

Communication

- RS485 (MODbus)
Optional equipment

HS21 prepares the various option equipment to improve safety more. The list of the option equipment is shown below.

- Inspection window
 Installed in the circuit breaker compartment door when visual confirmation is required by ships staff of the operating position of the circuit breaker.

- IR Window
 Using Thermography enables temperature measurement of busbar without opening the closed compartment.

- Arc detecting system
 Detection of an internal arc fault utilizing a light sensitive device (or current monitor) to detect arc flash. This enables the circuit breaker to open in the shortest possible time thereby minimizing damage to the switchboard.

- Arc gas exhaust duct
 Should be used to divert arc gases to a safe location in the event of an internal arc fault.

- Fully insulated bus bars
 This system affords additional insulated protection. Insulated tube on bus bar and boots are fitted to all bus bar connection points.

- Earthing switch on main bus bar
 If the customer requires additional safety, an earthing switch can be provided for the main bus bar.

- Surge arrester on main bus bar
 Additional protection can be provided on the main bus bar by the fitting of surge arrestors.
The accessories provided as standard are shown below.

- **Circuit breaker lifter**
 Used to assist in the removal of the circuit breaker, contactor etc.

 Specification
<table>
<thead>
<tr>
<th>Height</th>
<th>1850 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>770 mm</td>
</tr>
<tr>
<td>Depth</td>
<td>1241 mm</td>
</tr>
</tbody>
</table>

- **Circuit breaker draw-in/out handle**
 Used to assist in the withdrawal and insertion of the VCB and VCT.

- **Circuit breaker charge handle**
 Used to charge the closing spring of the circuit breaker.

- **Earthing switch operating handle**
 Used for earth switching operations.

- **Vacuum checker**
 Used for check the vacuum degree.

 Specification
<table>
<thead>
<tr>
<th>Input voltage</th>
<th>AC 200 / 220 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out-put voltage</td>
<td>AC 11 kV / 22 kV</td>
</tr>
<tr>
<td>Weight</td>
<td>22kg</td>
</tr>
</tbody>
</table>

Memo